
Oracle Complex Event Processing
Performance

An Oracle White Paper
Updated November 2008

Oracle Complex Event Processing Performance Page 2

Oracle Complex Event Processing
Performance

Introduction ... 3
Oracle Complex Event Processing Architecture .. 3
Real-Time Oracle Complex Event Processing Kernel 6
Oracle JRockit Real Time... 6
Benchmark Application.. 7
Benchmark Configuration and Methodology ... 9

Load Injection ... 9
Oracle Complex Event Processing Configuration................................... 9
Hardware and Software Stack ... 9
Methodology.. 10

Benchmark Results.. 11
Conclusion.. 16

Oracle Complex Event Processing Performance

INTRODUCTION
Oracle Complex Event Processing is a lightweight, Java-based (non–Java 2
Platform, Enterprise Edition) application server designed specifically to support
event-driven applications. These applications, including those in financial services
and other markets, are frequently characterized by the need to provide low and
deterministic latencies while handling extremely high rates of streaming input data.
This presents performance challenges that are quite different from those faced by
more-traditional application servers, which tend to focus on obtaining the highest-
possible throughput for transactional workloads.

The benchmark study described in this white paper includes a use case that is very
typical of financial front-office applications in capital markets to demonstrate
Oracle Complex Event Processing’s ability to provide low latency at very high data
rates. Implementing a signal generation scenario in which the application is
monitoring multiple incoming streams of market data, the benchmark application
watches for certain conditions that will then trigger some action.

In the benchmark study, Oracle Complex Event Processing was able to sustain an
event injection rate of up to 1 million events per second while maintaining low
average and peak latencies. At this injection rate, the average event latency for the
full processing path within the server was 67.3 microseconds, with 99.4 percent of
the events processed in less than 200 microseconds and 99.99 percent processed in
less than 5 milliseconds.

The remainder of this white paper includes a discussion of the product features that
enable this level of performance and a detailed description of the benchmark and
its results.

ORACLE COMPLEX EVENT PROCESSING ARCHITECTURE
Oracle Complex Event Processing

provides not only a CEP and EPL, but also
an overall platform that enables queries

written in EPL to be tightly integrated with
custom Java code written to a

POJO/Spring programming model.
Performance was not sacrificed by

providing this rich development platform.

Oracle Complex Event Processing has taken a unique approach among the
products that are targeting event processing, by providing not only a complex event
processing (CEP) engine and event processing language (EPL), but also an overall
platform that enables queries written in EPL to be tightly integrated with custom
Java code written to a Plain Old Java Object (POJO)/Spring programming model.
Oracle Complex Event Processing is truly an application server that provides
container services and enables applications to be deployed and managed. An

Oracle Complex Event Processing Performance Page 3

important design goal for the solution was that performance not be sacrificed as a
consequence of providing this rich development platform.

The Oracle Complex Event Processing architecture is composed of three main
layers: runtime, CEP processor, and development environment. Figure 1 shows the
high-level architecture of the platform. At the lowest level is the Java runtime
consisting of the Java virtual machine (JVM) and core Java classes. Above this is
Oracle Complex Event Processing, which is implemented using standard Java
Platform, Standard Edition 5 APIs and is certified on Oracle JRockit and Oracle
JRockit Real Time. The lowest latencies and highest levels of determinism are
obtained when using the Oracle JRockit Real Time runtime environment, which is
based on Oracle JRockit with extensions for deterministic garbage collection.

The Oracle Complex Event Processing
architecture is composed of three main

layers: runtime, CEP processor, and
development environment.

Figure 1: This figure illustrates Oracle Complex Event Processing’s high-level platform architecture.

Oracle Complex Event Processing is a Java container implemented with a
lightweight, modular architecture based on the Open Services Gateway initiative
framework. The container services include logging, security, and management as
well as services more specific to event-driven applications, including stream
management and a CEP engine. Oracle Complex Event Processing’s core also
includes a real-time kernel providing thread scheduling and synchronization
support tuned for low latency and determinism. Applications consisting of a mix of
POJOs and EPL queries can be dynamically deployed to the server and access the
various services via Spring-based dependency injection. Rounding out the overall
architecture is an integrated monitoring framework for the precise monitoring of

Oracle Complex Event Processing is a
Java container implemented with a

lightweight, modular architecture based on
the Open Services Gateway initiative

framework.

Oracle Complex Event Processing Performance Page 4

event latencies and a development environment based on the Eclipse integrated
development environment (IDE).

Figure 2 illustrates the typical data flow through an Oracle Complex Event
Processing application. On the inbound (left) side are event data streams from one
or more event sources. The incoming data is received, unmarshalled, and converted
into an internal event representation within an adapter module. The internal event
representation can be an application-defined Java object or a Java map. As the
adapter creates event objects, it sends them downstream to any components that
are registered to “listen” on the adapter. In Figure 2, the listening components are
so-called stream components: essentially a queue with an associated thread pool
that enables the upstream and downstream components to operate asynchronously
from each other. There is no requirement to include a stream component in the
event processing path, but it can be very useful in increasing concurrency for
applications that might otherwise have limited concurrency, for example, a data
feed coming in over a single connection.

There is no requirement to include a
stream component in the event processing

path, but it can be very useful in
increasing concurrency for applications

that might otherwise have limited
concurrency.

The next component in the Figure 2 data flow is the processor component. A
processor represents an instance of the CEP engine and hosts a set of queries
written in EPL. Such queries support filtering, aggregation, pattern matching, and
joining of event streams. The output of the configured EPL queries is sent to any
downstream listeners. In this example, a POJO is configured to listen to the
processor output. The POJO can perform additional processing on the events
output from the queries and trigger actions or send the output data to external
systems via standard or proprietary messaging protocols.

Figure 2: This illustrates the typical data flow through an Oracle Complex Event Processing

application.

The collection of interconnected adapter, stream, processor, and POJO
components is collectively referred to as the event processing network (EPN).
Although the example in Figure 2 shows a common topology, arbitrary EPN
graphs can be wired together consisting of any number of components of each type
in any order.

Oracle Complex Event Processing Performance Page 5

REAL-TIME ORACLE COMPLEX EVENT PROCESSING KERNEL
Meeting the stringent latency requirements of typical event-driven applications
requires specialized support in the areas of thread scheduling, synchronization, and
input/output (I/O). Techniques used by the Oracle Complex Event Processing
kernel to support low-latency processing include the following:

• Thread scheduling attempts to minimize blocking and context switching in
the latency critical path. Whenever possible, a given event will be carried
through its full execution path on the same thread with no context switch.
This approach is optimal for latency and also ensures in-order processing of
events for applications that require this. However, in some cases, handoff of
an event between threads might be desirable; for example, an application
might want to handle data from a single incoming network connection
concurrently in multiple threads. The kernel provides flexible thread pooling
and handoff mechanisms that enable concurrency to be introduced wherever
it is desired in the processing path, with minimal impact on overall latency.

• Synchronization strategies minimize lock contention that could otherwise be
a major contributor to latency.

• Careful management of memory including object reuse, use of memory
efficient data structures, and optimized management of retain windows
within the CEP engine support low-latency processing. The memory
optimizations benefit latency by reducing both the allocation rate and the
degree of heap fragmentation—both of which help the garbage collector
achieve minimal pause times.

• A pluggable adapter framework enables high-performance adapters to be
created for a variety of network protocols, with support for multiple
threading and I/O handler dispatch policies.

• Use of Oracle JRockit Real Time (described in the following section) offers
the lowest latencies and highest level of determinism.

ORACLE JROCKIT REAL TIME
Although Oracle Complex Event Processing is certified on the standard version of
the Oracle JRockit JVM, the lowest latencies and highest level of determinism are
obtained when running on the Oracle JRockit Real Time solution. Oracle JRockit
Real Time consists of the Oracle JRockit JVM with enhancements for low latency
and deterministic garbage collection. Typical garbage collection algorithms stop all
the threads of an application when they perform a collection. The resulting garbage
collection pause time can be very long (several seconds or longer) in some
environments and is a major contributor to latency spikes and jitter. Oracle JRockit
Real Time’s deterministic garbage collector uses a different approach designed to
make garbage collection pause times both shorter and more predictable. The
deterministic collector handles much of the collection while the application is
running, and pauses only briefly during critical phases of the garbage collection. In

Although Oracle Complex Event
Processing is certified on the standard

version of Oracle JRockit Real Time, the
lowest latencies and highest level of

determinism are obtained when running on
the Oracle JRockit Real Time solution.

Oracle JRockit Real Time consists of the
Oracle JRockit JVM with enhancements

for low latency and deterministic
garbage collection.

Oracle Complex Event Processing Performance Page 6

addition, the Oracle JRockit Real Time collector will monitor the duration of
individual pauses to ensure that the amount of time spent in a given garbage
collection pause doesn’t exceed a user-specified pause target. For example, with a
10-millisecond user-specified pause target, the deterministic collector would limit
the duration of individual garbage collection pauses to no more than 10
milliseconds, providing a high degree of predictability compared to traditional
garbage collection algorithms.

In addition to the deterministic garbage collection feature, the Oracle JRockit Real
Time solution also includes a latency analyzer tool, integrated with the Oracle
JRockit JVM runtime analyzer tool. The latency analyzer tool is a unique
performance analysis tool that identifies and analyzes sources of latency within a
Java application. Whereas typical profiling tools focus only on where central
processing unit time is spent while the application is running, the latency analyzer
tool provides detailed information about where, when, and how long the various
threads of the application block or wait. The latency analyzer tool can identify the
cause and duration of a thread wait, assessing whether the cause is due to garbage
collection, I/O, synchronization, or an explicit sleep or wait requested by the
application. The ability to locate and analyze these sources of latency is indis-
pensable in tuning a latency-sensitive application; therefore, the latency analyzer
tool was used extensively in tuning the benchmark described in this white paper.

In addition to the deterministic garbage
collection feature, the Oracle JRockit Real

Time solution also includes a latency
analyzer tool, integrated with the Oracle

JRockit JVM runtime analyzer tool.

BENCHMARK APPLICATION
The application used for this benchmark study implements a signal generation
scenario in which the application is monitoring multiple incoming streams of
market data, watching for the occurrence of certain conditions that will then trigger
some action. This is a very common scenario in front-office trading environments.
Figure 3 shows the overall structure of the benchmark test.

Adapter

Event

Processor

POJO

OOrraaccllee CCoommpplleexx EEvveenntt PPrroocceessssoorr

 Load
Generator

Simulated
Market
Data

TCP/IP)

400
Queries

Latency

Figure 3: In the benchmark study, simulated data is generated and sent to the event processor over a

TCP/IP connection. The event processor monitors the data and searches for two specified conditions.

Oracle Complex Event Processing Performance Page 7

The incoming data is generated by a load generator, which creates simulated stock
market data and sends it to the server over one or more Transmission Control
Protocol connections at a configured, metered rate. The format of the data on the
wire is specific to the implementation of the load generator and adapter and is
designed for compactness. Within the event processor, the adapter reads the
incoming data from the socket, unmarshalls it, creates an event instance (a Java
object conforming to certain conventions) for each incoming stock tick, and
forwards the events to the event processor.

The event processor is configured to monitor the incoming data for any one of 200
different stock, or ticker, symbols. Each of these stock symbols is monitored for
the following two conditions:

In the benchmark study, the event
processor is configured to monitor the

incoming data for any one of 200 different
stock, or ticker, symbols. Each of these

stock symbols is monitored for two
price-related conditions.

• The stock price increases or decreases by more than 2 percent from the
immediately previous price.

• The stock price has three or more consecutive upticks without an intervening
downtick.

The EPL syntax that is used to implement these rules for the stock symbol WSC is
shown below:

SELECT symbol, lastPrice, perc(lastPrice),
clientTimestamp, timestamp

FROM (select * from StockTick where symbol='WSC')
RETAIN 2 EVENTS

HAVING PERC(lastPrice) > 2.0 OR PERC(lastPrice) <
-2.0

SELECT symbol, lastPrice, trend(lastPrice),
clientTimestamp, timestamp

FROM (select * from StockTick where symbol='WSC')
RETAIN 3 EVENTS

HAVING TREND(lastPrice) > 2

These two queries are replicated for each of the 200 symbols being monitored,
resulting in a total of 400 queries that the event processor must execute against
each incoming event. When an incoming event matches one of the rules, an output
event is generated with the fields specified in the SELECT clause and sent to any
downstream listeners. In this case, the downstream listener is a Java POJO, which
computes aggregate statistics and latency data for the benchmark based on the
output events it receives.

Latency data for the benchmark is computed based on time stamps taken in the
adapter and POJO. The adapter takes the initial time stamp after reading the data
from the socket and prior to unmarshalling. This initial time stamp is inserted into
each event created by the adapter, passed through the event processor, and inserted

Oracle Complex Event Processing Performance Page 8

into any output events generated by a matching rule. When the POJO receives an
output event, it takes an end time stamp and subtracts the time stamp generated by
the adapter to compute the processing latency for that event. These latencies are
aggregated to produce overall latency data for the duration of the benchmark run.

BENCHMARK CONFIGURATION AND METHODOLOGY

Load Injection
The load generator can be configured to specify the number of connections it
should open to the CEP processor server and the rate at which it should send data
over each connection. We will refer to the aggregate send rate across all
connections as the aggregate injection rate. For this benchmark, the data sent by the
load generator for each event consists of a stock symbol, simulated price, and time
stamp data. The average size of the data on the wire is 20 bytes per event not
including Transmission Control Protocol/Internet Protocol header overhead. The
stock symbols are generated by repeatedly cycling through a list of 1,470 distinct
stock symbols. If the load generator is configured to open multiple connections to
the server, the symbol list is partitioned evenly across the set of connections. The
price data is generated dynamically based on a geometric Brownian motion
algorithm, and the price for a given symbol is updated each time the symbol is sent.

Oracle Complex Event Processing Configuration
The event processing network configuration within the CEP processor server
consists of a single adapter instance, single processor instance, and single POJO, as
described in the previous section.

The adapter is configured to use a blocking thread-per-connection model for
reading the incoming data and dispatching the events within the server. The adapter
feeds all the injected input events to the processor, which is configured with a total
of 400 queries (200 distinct symbols with two rules per symbol), as previously
discussed. Each of the configured queries is run against each input event, and for
each match an output event is sent downstream to the POJO.

Hardware and Software Stack
The hardware consists of one machine for the CEP processor server and one
machine for the load generator, connected by a gigabit Ethernet network. The
server and load generator machines each have an identical hardware configuration
and identical software stack. The exact technical specifications for the components
in the benchmark study are supplied in Table 1.

Oracle Complex Event Processing Performance Page 9

Component Technical Specifications

Hardware platform • Quad-Core Intel Xeon 7300–based server

• 4 Quad-Core Intel X7350 processors at
2.93GHz (16 cores total)

• 8MB L2 cache per processor, shared across
the 4 cores

• 32GB RAM

Operating system • Red Hat Enterprise Linux 5.0, 32 bit, kernel
2.6.18-8

JVM • Oracle JRockit Real Time 2.0

• 1GB heap size, deterministic garbage
collection–enabled

Oracle Complex Event Processing server • Oracle Complex Event Processing 2.0 (with
support patch ID XQWK)

Table 1: This table identifies the technical specifications for each component of the benchmark study.

Methodology
The benchmark data was collected as follows:

• An initial 15-minute warm-up run was done with the load generator opening
10 connections to the server and sending data at a rate of 100,000 events per
second per connection.

• The warm-up was followed by a series of 10 runs scaling the number of
connections from 1 to 10, with the load generator sending 100,000 events per
second per connection in all cases (maximum injection rate of 1 million
events per second). The duration of each run was 10 minutes.

• An additional series of 10 runs was done holding the number of connections
fixed at 10 and scaling the injection rate per connection from 10,000 to
100,000 events (maximum injection rate of 1 million events per second). The
duration of each run was 10 minutes.

• The injection rate, output event rate, average latency, absolute maximum
latency, and latency distributions were collected for all runs.

Oracle Complex Event Processing Performance Page 10

BENCHMARK RESULTS
Table 2 and Figures 4 and 5 show the results scaling from 1 to 10 connections at
100,000 events per second per connection.

Table 2: Scaling from 1 to 10 connections at 100,000 events/second per connection.

Average Latency at 100,000 Events/Second/Connection

0

10

20

30

40

50

60

70

80

0 2 4 6 8 10

Number of Load Generator Connections

A
ve

ra
ge

 L
at

en
cy

 (m
ic

ro
se

co
nd

s)

12

Figure 4: Average latency scaling from 1 to 10 connections (100,000 to 1 million events/second).

Oracle Complex Event Processing Performance Page 11

Peak Latency at 100,000 Events/Second/Connection

0

5

10

15

20

25

0 2 4 6 8 10

Number of Load Generator Connections

La
te

nc
y

(m
ill

is
ec

on
ds

)

12

99.99% Latency Max Latency

Figure 5: Peak latency scaling from 1 to 10 connections (100,000 to 1 million events/second).

As discussed earlier, the latency values are collected only for those events that are
forwarded to the POJO as a result of a match. The values represent the latency
from an initial time stamp in the adapter (before the unmarshalling is done and
before the internal event object is created) and a time stamp when the event is
received by the POJO.

As Table 3 shows, the output event rate was a fixed percentage—3.9 percent—of
the injection rate as the load increased. There was a gradual increase in average and
maximum latencies as the number of connections and overall injection rate
increased. The 99.99 percentile latencies remained fairly flat—between 2.1 and 2.6
milliseconds—with increasing load from 200,000 through 700,000 events per
second, and then increased slightly as the injection rate approached 1 million events
per second. At the maximum benchmark load of 1 million events per second the
average and 99.99 percentile latencies are still quite low and the even the absolute
maximum has degraded only slightly with the increased load.

Table 3 and Figures 6 and 7 show the results when holding the number of
connections fixed at 10 and scaling the injection rate.

Oracle Complex Event Processing Performance Page 12

Table 3: Scaling from 100,000 to 1 million events/second with 10 connections.

Average Latency vs. Injection Rate (10 Connections)

0

10

20

30

40

50

60

70

80

0 200000 400000 600000 800000 1000000 1200000

Injection Rate (events/second)

A
ve

ra
ge

 L
at

en
cy

(m

ic
ro

se
co

nd
s)

Figure 6: Average latency scaling from 100,000 to 1 million events/second with 10 connections.

Peak Latency vs. Injection Rate (10 Connections)

0

5

10

15

20

25

0 200000 400000 600000 800000 1000000 1200000

Injection Rate (events/second)

La
te

nc
y

(m
ill

is
ec

on
ds

)

99.99% Latency Max Latency

Figure 7: Peak latency scaling from 100,000 to 1 million events/second with 10 connections.

Oracle Complex Event Processing Performance Page 13

The effect of increasing load on latency when scaling with a fixed number of
connections is very similar to the results shown when the load’s scale was increased
by escalating the number of connections. This similarity in results suggests that the
performance of the system at a given input load is mostly independent of the
number of connections used to inject the data. A difference is visible in the
maximum latency curves in the range of 400,000 to 700,000 events per second,
suggesting that in this range maximum latencies could be reduced at a given load by
using a smaller number of connections.

The histograms in Figures 8 and 9 show the latency distribution at an injection rate
of 1 million events per second. The first histogram uses a linear scale on the y axis
and consolidates the event count for the range >200 microseconds into a single
(barely visible) bar. The second histogram displays the same data using a log scale
on the y axis to provide additional detail in the >200 microsecond latency range.
The histograms illustrate how strongly skewed the distribution is toward the lower
end of the latency range, with 86.3 percent of the latency values below 100
microseconds and 99.4 percent of the latency values below 200 microseconds, at an
injection rate of 1 million events per second.

Distribution of Latency Values

20,136,515

3,054,550

131,598
0

5,000,000

10,000,000

15,000,000

20,000,000

25,000,000

0 - 99 100 - 199 >=200

Latency Range (microseconds)

of

 O
ut

pu
t E

ve
nt

s

Figure 8: Distribution of output latency values at an injection rate of 1 million events/second using a

linear scale for the range >200 microseconds.

Oracle Complex Event Processing Performance Page 14

Distribution of Latency Values (log scale)

1
10

100
1,000

10,000
100,000

1,000,000
10,000,000

100,000,000

0 -
 99

20
0 - 2

99

40
0 -

 49
9

600
 - 6

99

80
0 -

 89
9

100
0 - 1

09
9

12
00 -

 12
99

14
00

 - 1
499

160
0 -

 169
9

18
00

 - 1
89

9

>=
 20

00

Latency Range (microseconds)

of

 O
ut

pu
t E

ve
nt

s
(lo

g
sc

al
e)

Figure 9: Distribution of output latency values over 10-minute run at 1 million events/second injection

rate using a logarithmic scale.

Finally, Figure 10 shows the garbage collection pause times for the duration of the
benchmark run at 1 million events per second. There were a total of 477 garbage
collections over the course of the 10-minute run. The maximum garbage collection
pause during the run was 17 milliseconds, with 97 percent of the pauses at or below
15 milliseconds. The ability of Oracle JRockit Real Time to maintain these short
and predictable garbage collection pauses under load was a major factor in limiting
the peak application latencies.

Figure 10: Garbage collection pause times over 10-minute run at an injection rate of 1 million

events/second injection.

Oracle Complex Event Processing Performance Page 15

CONCLUSION
This white paper has reviewed the overall architecture of Oracle Complex Event
Processing and some of the specific features and design characteristics that enable it
to provide high performance for event-driven applications, including

• Container services such as logging, security, and management, as well as
services more specific to event-driven applications, including stream
management and a CEP engine

• Specialized support in the areas of thread scheduling, synchronization, and
I/O through the Oracle Complex Event Processing kernel

• Oracle JRockit Real Time consisting of the Oracle JRockit JVM, with
enhancements for low latency and deterministic garbage collection

• A latency analyzer tool integrated with the Oracle JRockit runtime analyzer
tool that identifies and analyzes sources of latency within a Java application

• An integrated monitoring framework for precise monitoring of event
latencies and a development environment based on the Eclipse IDE

The results from the benchmark study
demonstrate very clearly Oracle Complex
Event Processing’s ability to achieve low

and predictable latency under very
high loads.

The performance characteristics of Oracle Complex Event Processing were studied
using a very common event processing use case. The results demonstrate very
clearly Oracle Complex Event Processing’s ability to achieve low and predictable
latency under very high loads.

Oracle Complex Event Processing Performance Page 16

Oracle Complex Event Processing Performance
Updated November 2008

Oracle Corporation
World Headquarters
500 Oracle Parkway
Redwood Shores, CA 94065
U.S.A.

Worldwide Inquiries:
Phone: +1.650.506.7000
Fax: +1.650.506.7200
oracle.com

Copyright © 2008, Oracle and/or its affiliates. All rights reserved.
This document is provided for information purposes only and the
contents hereof are subject to change without notice.
This document is not warranted to be error-free, nor subject to any
other warranties or conditions, whether expressed orally or implied
in law, including implied warranties and conditions of merchantability
or fitness for a particular purpose. We specifically disclaim any
liability with respect to this document and no contractual obligations
are formed either directly or indirectly by this document. This document
may not be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without our prior written permission.
Oracle is a registered trademark of Oracle Corporation and/or its affiliates.
Other names may be trademarks of their respective owners.

