
Verified Functional
Programming
in Agda

Aaron Stump

S
T

U
M

P

V
E

R
IF

IE
D

 F
U

N
C

T
IO

N
A

L
 P

R
O

G
R

A
M

M
IN

G
 IN

 A
G

D
A

A

C
M

 | M
O

R
G

A
N

 &
 C

L
A

Y
P

O
O

L

ISBN: 978-1-97000-124-2

9 781970 001242

90000

ABOUT ACM BOOKS
ACM Books is a new series of high quality books

for the computer science community, published

by ACM in collaboration with Morgan & Claypool

Publishers. This first book is an updated version of

the dissertation that won the 2012 ACM Doctoral

Dissertation Award. ACM Books publications are widely distributed in both print

and digital formats through booksellers and to libraries (and library consortia)

and individual ACM members via the ACM Digital Library platform.

B O O K S . A C M . O R G • W W W . M O R G A N C L A Y P O O L . C O M

Verified Functional
Programming in Agda
Aaron Stump

Agda is an advanced programming language based on Type Theory. Agda’s type system is

expressive enough to support full functional verification of programs, in two styles. In exter-

nal verification, we write pure functional programs and then write proofs of properties about

them. The proofs are separate external artifacts, typically using structural induction. In

internal verification, we specify properties of programs through rich types for the programs

themselves. This often necessitates including proofs inside code, to show the type checker

that the specified properties hold. The power to prove properties of programs in these two

styles is a profound addition to the practice of programming, giving programmers the power to

guarantee the absence of bugs, and thus improve the quality of software more than previously

possible.

Verified Functional Programming in Agda is the first book to provide a systematic ex-

position of external and internal verification in Agda, suitable for undergraduate students of

Computer Science. No familiarity with functional programming or computer-checked proofs

is presupposed. The book begins with an introduction to functional programming through

familiar examples like booleans, natural numbers, and lists, and techniques for external ver-

ification. Internal verification is considered through the examples of vectors, binary search

trees, and Braun trees. More advanced material on type-level computation, explicit reasoning

about termination, and normalization by evaluation is also included. The book also includes a

medium-sized case study on Huffman encoding and decoding.

MC&

MC&

Verified Functional
Programming
in Agda

Aaron Stump

S
T

U
M

P

V
E

R
IF

IE
D

 F
U

N
C

T
IO

N
A

L
 P

R
O

G
R

A
M

M
IN

G
 IN

 A
G

D
A

A

C
M

 | M
O

R
G

A
N

 &
 C

L
A

Y
P

O
O

L

ISBN: 978-1-97000-124-2

9 781970 001242

90000

ABOUT ACM BOOKS
ACM Books is a new series of high quality books

for the computer science community, published

by ACM in collaboration with Morgan & Claypool

Publishers. This first book is an updated version of

the dissertation that won the 2012 ACM Doctoral

Dissertation Award. ACM Books publications are widely distributed in both print

and digital formats through booksellers and to libraries (and library consortia)

and individual ACM members via the ACM Digital Library platform.

B O O K S . A C M . O R G • W W W . M O R G A N C L A Y P O O L . C O M

Verified Functional
Programming in Agda
Aaron Stump

Agda is an advanced programming language based on Type Theory. Agda’s type system is

expressive enough to support full functional verification of programs, in two styles. In exter-

nal verification, we write pure functional programs and then write proofs of properties about

them. The proofs are separate external artifacts, typically using structural induction. In

internal verification, we specify properties of programs through rich types for the programs

themselves. This often necessitates including proofs inside code, to show the type checker

that the specified properties hold. The power to prove properties of programs in these two

styles is a profound addition to the practice of programming, giving programmers the power to

guarantee the absence of bugs, and thus improve the quality of software more than previously

possible.

Verified Functional Programming in Agda is the first book to provide a systematic ex-

position of external and internal verification in Agda, suitable for undergraduate students of

Computer Science. No familiarity with functional programming or computer-checked proofs

is presupposed. The book begins with an introduction to functional programming through

familiar examples like booleans, natural numbers, and lists, and techniques for external ver-

ification. Internal verification is considered through the examples of vectors, binary search

trees, and Braun trees. More advanced material on type-level computation, explicit reasoning

about termination, and normalization by evaluation is also included. The book also includes a

medium-sized case study on Huffman encoding and decoding.

MC&

MC&

Verified Functional
Programming
in Agda

Aaron Stump

S
T

U
M

P

V
E

R
IF

IE
D

 F
U

N
C

T
IO

N
A

L
 P

R
O

G
R

A
M

M
IN

G
 IN

 A
G

D
A

A

C
M

 | M
O

R
G

A
N

 &
 C

L
A

Y
P

O
O

L

ISBN: 978-1-97000-124-2

9 781970 001242

90000

ABOUT ACM BOOKS
ACM Books is a new series of high quality books

for the computer science community, published

by ACM in collaboration with Morgan & Claypool

Publishers. This first book is an updated version of

the dissertation that won the 2012 ACM Doctoral

Dissertation Award. ACM Books publications are widely distributed in both print

and digital formats through booksellers and to libraries (and library consortia)

and individual ACM members via the ACM Digital Library platform.

B O O K S . A C M . O R G • W W W . M O R G A N C L A Y P O O L . C O M

Verified Functional
Programming in Agda
Aaron Stump

Agda is an advanced programming language based on Type Theory. Agda’s type system is

expressive enough to support full functional verification of programs, in two styles. In exter-

nal verification, we write pure functional programs and then write proofs of properties about

them. The proofs are separate external artifacts, typically using structural induction. In

internal verification, we specify properties of programs through rich types for the programs

themselves. This often necessitates including proofs inside code, to show the type checker

that the specified properties hold. The power to prove properties of programs in these two

styles is a profound addition to the practice of programming, giving programmers the power to

guarantee the absence of bugs, and thus improve the quality of software more than previously

possible.

Verified Functional Programming in Agda is the first book to provide a systematic ex-

position of external and internal verification in Agda, suitable for undergraduate students of

Computer Science. No familiarity with functional programming or computer-checked proofs

is presupposed. The book begins with an introduction to functional programming through

familiar examples like booleans, natural numbers, and lists, and techniques for external ver-

ification. Internal verification is considered through the examples of vectors, binary search

trees, and Braun trees. More advanced material on type-level computation, explicit reasoning

about termination, and normalization by evaluation is also included. The book also includes a

medium-sized case study on Huffman encoding and decoding.

MC&

MC&

Verified Functional
Programming in Agda

ACM Books

Editor in Chief
M. Tamer Özsu, University of Waterloo

ACM Books is a new series of high-quality books for the computer science community, pub-
lished by ACM in collaboration with Morgan & Claypool Publishers. ACM Books publications
are widely distributed in both print and digital formats through booksellers and to libraries
(and library consortia) and individual ACM members via the ACM Digital Library platform.

Verified Functional Programming in Agda
Aaron Stump, The University of Iowa
2016

The VR Book: Human-Centered Design for Virtual Reality
Jason Jerald, NextGen Interactions
2016

Ada’s Legacy
Robin Hammerman, Stevens Institute of Technology; Andrew L. Russell, Stevens Institute of
Technology
2016

Edmund Berkeley and the Social Responsibility of Computer Professionals
Bernadette Longo, New Jersey Institute of Technology
2015

Candidate Multilinear Maps
Sanjam Garg, University of California, Berkeley
2015

Smarter than Their Machines: Oral Histories of Pioneers in Interactive Computing
John Cullinane, Northeastern University; Mossavar-Rahmani Center for Business

and Government, John F. Kennedy School of Government, Harvard University
2015

A Framework for Scientific Discovery through Video Games
Seth Cooper, University of Washington
2014

Trust Extension as a Mechanism for Secure Code Execution on Commodity Computers
Bryan Jeffrey Parno, Microsoft Research
2014

Embracing Interference in Wireless Systems
Shyamnath Gollakota, University of Washington
2014

Verified Functional
Programming in Agda

Aaron Stump
The University of Iowa

ACM Books #9

Copyright © 2016 by the Association for Computing Machinery
and Morgan & Claypool Publishers

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means—electronic, mechanical, photocopy, recording, or
any other except for brief quotations in printed reviews—without the prior permission of the
publisher.

Designations used by companies to distinguish their products are often claimed as trademarks
or registered trademarks. In all instances in which Morgan & Claypool is aware of a claim,
the product names appear in initial capital or all capital letters. Readers, however, should
contact the appropriate companies for more complete information regarding trademarks and
registration.

Verified Functional Programming in Agda

Aaron Stump

books.acm.org
www.morganclaypool.com

ISBN: 978-1-97000-127-3 hardcover
ISBN: 978-1-97000-124-2 paperback
ISBN: 978-1-97000-125-9 ebook
ISBN: 978-1-97000-126-6 ePub
Series ISSN: 2374-6769 print 2374-6777 electronic

DOIs: 10.1145/2841316 Book
10.1145/2841316.2841317 Preface
10.1145/2841316.2841318 Chapter 1
10.1145/2841316.2841319 Chapter 2
10.1145/2841316.2841320 Chapter 3
10.1145/2841316.2841321 Chapter 4
10.1145/2841316.2841322 Chapter 5
10.1145/2841316.2841323 Chapter 6
10.1145/2841316.2841324 Chapter 7
10.1145/2841316.2841325 Chapter 8
10.1145/2841316.2841326 Chapter 9
10.1145/2841316.2841327 Chapter 10
10.1145/2841316.2841328 Appendixes
10.1145/2841316.2841329 References/Index

A publication in the ACM Books series, #9
Editor in Chief: M. Tamer Özsu, University of Waterloo
Area Editor: Laurie Hendren, McGill University

First Edition

10 9 8 7 6 5 4 3 2 1

http://dx.doi.org/10.1145/2841316
http://dx.doi.org/10.1145/2841316.2841317
http://dx.doi.org/10.1145/2841316.2841318
http://dx.doi.org/10.1145/2841316.2841319
http://dx.doi.org/10.1145/2841316.2841320
http://dx.doi.org/10.1145/2841316.2841321
http://dx.doi.org/10.1145/2841316.2841322
http://dx.doi.org/10.1145/2841316.2841323
http://dx.doi.org/10.1145/2841316.2841324
http://dx.doi.org/10.1145/2841316.2841325
http://dx.doi.org/10.1145/2841316.2841326
http://dx.doi.org/10.1145/2841316.2841327
http://dx.doi.org/10.1145/2841316.2841328
http://dx.doi.org/10.1145/2841316.2841329

For Madeliene and Seraphina

Contents

Preface xiii

Chapter 1 Functional Programming with the Booleans 1

1.1 Declaring the Datatype of Booleans 1
1.2 First Steps Interacting with Agda 4
1.3 Syntax Declarations 4
1.4 Defining Boolean Operations by Pattern Matching: Negation 6
1.5 Defining Boolean Operations by Pattern Matching: And, Or 9
1.6 The if-then-else Operation 11
1.7 Conclusion 14

Exercises 14

Chapter 2 Introduction to Constructive Proof 17

2.1 A First Theorem about the Booleans 17
2.2 Universal Theorems 20
2.3 Another Example, and More On Implicit Arguments 25
2.4 Theorems with Hypotheses 28
2.5 Going Deeper: Curry-Howard and Constructivity 35
2.6 Further Examples 38
2.7 Conclusion 40

Exercises 41

Chapter 3 Natural Numbers 43

3.1 Peano Natural Numbers 44
3.2 Addition 45
3.3 Multiplication 57
3.4 Arithmetic Comparison 63

x Contents

3.5 Even/Odd and Mutually Recursive Definitions 69
3.6 Conclusion 70

Exercises 70

Chapter 4 Lists 73

4.1 The List Datatype and Type Parameters 73
4.2 Basic Operations on Lists 75
4.3 Reasoning about List Operations 83
4.4 Conclusion 95

Exercises 96

Chapter 5 Internal Verification 99

5.1 Vectors 100
5.2 Binary Search Trees 107
5.3 Sigma Types 115
5.4 Braun Trees 118
5.5 Discussion: Internal vs. External Verification 127
5.6 Conclusion 129

Exercises 129

Chapter 6 Type-Level Computation 131

6.1 Integers 131
6.2 Formatted Printing 136
6.3 Proof by Reflection 141
6.4 Conclusion 148

Exercises 149

Chapter 7 Generating Agda Parsers with gratr 151

7.1 A Primer on Grammars 152
7.2 Generating Parsers with gratr 158
7.3 Conclusion 165

Exercises 166

Chapter 8 A Case Study: Huffman Encoding and Decoding 169

8.1 The Files 170
8.2 The Input Formats 171
8.3 Encoding Textual Input 171

Contents xi

8.4 Decoding Encoded Text 181
8.5 Conclusion 184

Exercises 185

Chapter 9 Reasoning About Termination 187

9.1 Termination Proofs 187
9.2 Operational Semantics for SK Combinators 197
9.3 Conclusion 213

Exercises 214

Chapter 10 Intuitionistic Logic and Kripke Semantics 215

10.1 Positive Propositional Intuitionistic Logic (PPIL) 216
10.2 Kripke Structures 220
10.3 Kripke Semantics for PPIL 224
10.4 Soundness of PPIL 227
10.5 Completeness 232
10.6 Conclusion 245

Exercises 246

Appendix A Quick Guide to Symbols 247

Appendix B Commonly Used Emacs Control Commands 249

Appendix C Some Extra Emacs Definitions 251

References 253

Index 257

Author’s Biography 259

Preface

Programming languages are one of the absolutely essential parts of Computer Sci-
ence. Without them, programmers could not express their ideas about how to process
information in all the amazing and intricate ways necessary to support the contin-
uing explosion of applications for computing in the 21st century. Most students of
Computer Science, certainly in the U.S., start learning a programming language right
at the beginning of their studies. We may go on to learn analysis of sophisticated
algorithms and data structures, graphics, operating systems, databases, network pro-
tocols, robotics, and many other topics, but programming languages are the practical
starting point for Computer Science.

Programming is an intellectually challenging task, and creating high-quality pro-
grams that do what they are supposed to do, and that can be maintained and adapted
over time, is very difficult. In this book, we will focus on how to write programs that
work as desired. We will not be concerned with maintainability and adaptability di-
rectly (though of course, these topics cannot be totally ignored when writing any
significant piece of software). The state of the art for achieving correct software for
most industrial programming at major corporations is testing. Unit testing, system
testing, regression suites—these are powerful and effective tools for rooting out bugs
and thus ensuring software quality. But they are limited. A famous aphorism by Tur-
ing award winner Edsger Dijkstra is that “Program testing can be used to show the
presence of bugs, but never to show their absence!” [1972]. For there is only a finite
number of tests you can run, but in practice, the number of possible inputs or sys-
tem configurations that should be tested is infinite (technically, modern computers
only have finitely many states since they have only finite memories, but the number
is beyond astronomical, and should be considered infinite for practical purposes).

Verified Programming
This book is about a new way to program, where instead of just testing programs
on a finite number of inputs, we write mathematical proofs that demonstrate their

xiv Preface

correctness on all possible inputs. These proofs are written with a specific syntax,
in the programming language itself. The compiler checks those proofs when it type-
checks and compiles the code. If all the proofs are correct, then we can be sure that
our program really does satisfy the property we have proved it has. Testing can still be
an important way of assuring code quality, because writing proofs is hard, and often
it may be more practical just to do some testing. But we have now a new tool that we
can use in our quest to build high-quality software: we can verify software correctness
by writing mathematical proofs about it.

While these ideas have been known in the Programming Languages and Verifi-
cation research communities for many decades, it has proven difficult to design lan-
guages and tools that really make this vision of verified programming a feasible reality.
In the past 10–15 years, however, this has changed. New languages and tools, building
on new research results in programming language theory and new insights into the
design of effective languages for verified programming, have made it realistic, for the
first time in the history of programming, to prove properties of interesting programs
in reasonably general-purpose programming languages, without a PhD in logic and
without a huge and tedious engineering investment.

Agda
In this book, we will learn how to write verified programs using one such advanced
programming language called Agda. Agda is a research language developed over a
number of years at Chalmers University of Technology in Gothenburg, Sweden. The
current version, Agda 2, was designed and implemented by Ulf Norell as part of his
doctoral dissertation [Norell 2007]. Since then, it has been improved and developed
further by a long list of authors, including (from the Agda package information):

Ulf Norell, Nils Anders Danielsson, Andreas Abel, Makoto Takeyama, Catarina
Coquand, with contributions by Stevan Andjelkovic, Marcin Benke, Jean-Philippe
Bernardy, James Chapman, Dominique Devriese, Peter Divanski, Fredrik Nordvall
Forsberg, Olle Frediksson, Daniel Gustafsson, Alan Jeffrey, Fredrik Lindblad, Guil-
hem Moulin, Nicolas Pouillard, Andrés Sicard-Ramı́rez and many more.

The basic mode for working with Agda is to use the EMACS text editor as a rudi-
mentary Integrated Development Environment (IDE). Text is entered into a buffer in
EMACS, and then with commands like Ctrl+c Ctrl+l (typed in sequence), the text in that
buffer is sent to Agda for type checking and proof checking. An amazing feature of
Agda and its EMACS editing mode is that they support Unicode characters. So rather
than just using alphanumeric characters and basic punctuation, you can use a much
larger character set. Unicode supports almost 110,000 characters. Usually, we write
programs using basic Latin characters, like those shown in Figure 1.

Preface xv

0040 0050 0060 0070

004 005 006 007003

0041 0051 0061 0071

0042 0052 0062 0072

0043 0053

0030

0031

0032

0033 0063 0073

@ P ` p

A Q a q

B R b r

C S

0

1

2

3 c s

Figure 1 Basic Latin characters.

10080 10090 100A0 100B0

1008 1009 100A 100B

10081 10091 100A1 100B1

10082 10092 100A2 100B2

10083 10093 100A3 100B3

10084 10094 100A4 100B4

Figure 2 Linear B ideograms.

Imagine the cool programs we could write if we were allowed to use Linear B
ideograms (part of Unicode, though we would need to install a special font package
to get these into Agda), such as those shown in Figure 2.

Okay, maybe we do not actually want to program with ancient symbols for agricul-
tural commodities, but it is nice to be able to use mathematical notations, particularly

xvi Preface

when we are stating and proving properties of programs. So the Unicode support in
Agda is a great feature, though it takes a little practice to get used to entering text in
Unicode. The Agda mode for EMACS recognizes certain names that begin with a back-
slash, as you type them. It then converts them to the special symbol associated with
those names. For example, if you type \all into EMACS in Agda mode, EMACS will mag-
ically change it to ∀ (the logical symbol that is used when expressing that “for all”
elements of some particular type, some formula is true).

Functional Programming
There is another important aspect of programming in Agda: Agda is a functional pro-
gramming language. Functional programming is a programming paradigm, different
from the object-oriented or imperative paradigms. There are two meanings to “func-
tional programming.”

The weak sense. Functions are central organizing abstractions of the language.
Furthermore, they can be defined anonymously, passed as input arguments, or
returned as output values.

The strong sense. Every function that you define in the programming language
behaves like a mathematical function, in the sense that if you call it with the
same inputs, you are guaranteed to get the same outputs. Such languages are
called pure functional languages. Languages that are functional in the weak but
not the strong sense are sometimes called impure functional languages.

While many languages can be argued to be functional languages in the weak sense,
very few are functional in the strong sense. For how can a function like gettimeof-

day() behave like a mathematical function? It takes no arguments, and if everything
is working properly, it should always give you a different answer! It would seem to be
impossible to support such functions in a pure functional programming language.
Other examples include input/output and mutable data structures like arrays where
a function can, as a side effect of its operation, change which values are stored in
the data structure. Amazingly, handling side effects in a pure functional language is
possible, and we will see a hint of this in this book. Thoroughly exploring how side ef-
fects are supported in a pure functional language is, however, outside the scope of our
subject here. The pure functional language for which this issue has been most deeply
resolved is Haskell. Agda is implemented in Haskell, and imports a small portion of
Haskell’s solution to the problem.

Functional programming is a beautiful and natural fit for the task of verified pro-
gramming. We know reasonably well how to reason about mathematical functions,

Preface xvii

using basic principles and tools of logical reasoning. Examples include reasoning
about “and”, “or”, “not”, “implies”, and other propositional connectives; equational
reasoning, like concluding that f x must equal f y if x = y; mathematical induction
(which we will review later in the book); and more. If programs can essentially be
viewed as mathematical functions—as they can in a pure functional language—then
all these tools apply, and we are well on our way to a reasonably simple approach to
formal reasoning about the behavior of programs.

In Agda, as we will see, there is one further restriction on programs. Not only must
they be pure—so using mutable data structures like arrays, or input/output, must
be done carefully (the way Haskell does)—Agda also must be able to tell that they
are guaranteed to terminate on all inputs. For many programs we will want to write
this is easily done, but sometimes it is a nuisance. And, of course, there are some
programs like Web browsers or operating systems that are intended to run indefinitely.
In addition, one can prove that for any scheme to limit programs just to ones that
terminate on all inputs (these are called uniformly terminating), there will be programs
that actually do terminate on all inputs but which that scheme cannot recognize. This
is a deep result, with a nontrivial proof, but it shows that we cannot hope to recognize
exactly the uniformly terminating programs. So Agda will prevent us from writing
some programs we might wish to write, though it allows us to disable terminationg
checking globally or for specific functions. In practice, for many natural programs
we’d like to write, uniform termination can be easily checked by Agda. So it is not as
burdensome as you might think, to write only uniformly terminating programs.

One feature of Agda which we will not explore in this book is the lazy representation
of infinite data structures, like infinite lists and trees. This is an important part of
functional programming in Haskell, to which Agda compiles. Such data structures are
known as coinductive, and one writes corecursive programs operating on them. The
theory and practice of corecursive programming has received significant attention
in recent years [Abel and Pientka 2013]. Agda currently supports several distinct
approaches to this style of programming. Partly because there is not (quite?) yet a
settled solution for this problem, at least in Agda—and partly because the subject is yet
more advanced than what is covered here—I have chosen not to include coinduction
and corecursive programming in this book.

Types
At the heart of Agda’s approach to verified functional programming is its type system.
In mainstream typed programming languages like Java, we have basic datatypes like
int and boolean, and also container types like List<A>, for lists of elements of type

xviii Preface

A. Agda’s type system is much more expressive, and supports two uses of types that
are not found in industrial languages.

Types indexed by data values. Instead of just having a type list A for lists of
elements of type A, Agda’s data-indexed types allow us to define a type vector A

n of vectors of length n containing elements of type A. The index n to the vector
type constructor is a natural number ({0, 1, 2, . . .}) giving the length of the vector.
This makes it possible to specify interesting properties of functions, just through
the types of their inputs and outputs. A very well-known example of this is the
type of the append operation on vectors, which is essentially:

append : vector A n → vector A m → vector A(n + m)

The length of the output vector is equal to the sum of the lengths of the input
vectors—and we can express this using the length index to vector. Whenever a
property like this relationship between input and output lengths for vector ap-
pend is established through the types of the inputs and outputs to the function,
that property is said to have been internally verified. The verification is internal
to the function definition itself, and is confirmed when the function’s code is
type-checked. We will see several examples of this in Chapter 5.

Types expressing logical formulas. Agda considers specifications like “for any list
L, the reverse of the reverse of a list L is equal to L”, which we will write as
∀L → rev(revL) ≡ L in Agda, to be just fancy kinds of types. To prove a formula
F expressed as a type, we just have to write a program that has type F . That is
because, as mentioned before, Agda requires all programs to terminate on all
inputs. So if we can write a function which takes in a list L and produces a proof
that rev (rev L) equals L, then that function is guaranteed to succeed for any
list L: the function cannot run forever, or throw an exception (Agda does not
have these), or fail for any other reason. Such a function can thus be regarded
as a proof of the formula. In this case, we say that the type is inhabited: there is
some program that has that type. If we prove a property about a function like rev
by showing a type like this one is inhabited, then we have externally verified the
function. We have written our code (for rev, in this case), and then externally to
that code we have written a proof of a property about it.

Agda’s support for both internal and external verification of functions opens up
a really interesting domain of possibilities for writing verified code. We will see ex-
amples of these two verification styles in what follows, both of which rest on Agda’s
powerful type system.

Preface xix

A Few Questions

Why Study This?
Some readers of this book may be enthusiastically interested in learning how to write
verified functional programs and how to use Agda. But maybe someone else is wonder-
ing why this is worthwhile. It may sound at least somewhat intellectually interesting,
but shouldn’t we be learning how to write software for real-world applications like
Web services, or maybe embedded systems like pacemakers or power substations con-
trollers, or electronic control units (ECUs) in cars?

In the not-so-distant future, it is my prediction and firm belief that a significant
body of industrial practitioners will be using a language similar to Agda to implement
such systems. Why? Because all those example systems just mentioned have been
shown to be vulnerable to malicious computer attacks in recent years (see, e.g., Fu
and Blum [2013]). And in the arms race against black-hat hackers, the ability to prove
that code is absolutely correct (with respect to some specification) is too powerful a de-
fensive weapon to remain unused. At some point, the costs of security-critical bugs—
which can be extremely high, perhaps unquantifiable (imagine a voting-machine bug
that allows someone to swing the election for U.S. President)—will be so high and
the tools for language-based verification will have become usable enough that main-
stream industry will begin to adopt them.

A second answer is that functional programming itself is gaining momentum in
industry. A significant number of major companies, including Twitter, LinkedIn,
and quite a few more, have adopted the Scala programming language. Scala is a
descendant of Java incorporating functional-programming features and idioms. It
also has quite a complex type system. OCaml and Haskell are two other influential
functional languages that are seeing increased use in industry. Certain sectors, notably
finance, value the more concise and mathematical expression of computational ideas
which is often possible with functional code, as this makes it easier for domain experts
(e.g., securities traders) to communicate with the developers providing their tools.
And because the paradigm of pure functional programming provides a much simpler
model for concurrent computation than imperative programming—it is easy to reason
about concurrent executions of functions that have no side effects, while reasoning
about side effects quickly becomes very complicated with concurrent code—Haskell is
finding applications at companies like Facebook, where massively concurrent coding
is the norm [Metz 2015]. And, basic ideas from functional programming appear in
many other very mainstream languages. For example, JavaScript and Python both
have anonymous functions, which (as already mentioned) are central to functional
programming. Apple’s Swift language for programming iOS devices is another highly

xx Preface

visible industrial language adopting important ideas from functional programming
[Eidhof et al. 2014].

Agda is, in some ways, the most advanced functional programming language in
existence, and so if you learn how to program in Agda, you will have a very strong
foundation for programming in other languages that use the idioms of functional
programming. Beyond such pragmatic considerations, though, I hope you will find
that it is an amazing experience to write code and be able to prove definitively that it
satisfies its specification.

What Background Is Needed?
This book is intended for students of Computer Science, either undergraduates or be-
ginning graduate students without significant prior background in verified functional
programming. Students who already know functional programming will likely find
they can move quickly through the explanations of basic programs on pure functional
data, and focus on how to write proofs about these. But knowledge of functional pro-
gramming is not expected; indeed, the book seeks to provide an introduction to this
topic. The main background I am assuming is knowledge of some other programming
language (not Agda), such as Python, Java, C/C++, or other mainstream languages.
Since most Computer Science majors, at least in the U.S, learn Java, I will often try to
explain something in Agda by relating it to Java.

While verification is based heavily on logic, the contents of an undergraduate
course in discrete math should be sufficient. We will review basic forms of logical
reasoning like propositional reasoning, equational reasoning, use of quantifiers, and
induction, in the context of Agda. Agda is based on constructive logic, which differs
somewhat from the usual classical logic considered in discrete math courses. Con-
structive proofs give explicit computational evidence for formulas. So in Agda, doing
logic is literally just programming. For students of Computer Science, logical reason-
ing will likely be more natural in Agda than in previous coursework.

Finally, in order to have some interesting programs to write and reason about, I am
assuming knowledge of basic algorithms and data structures like lists and trees. An
undergraduate algorithms course should be sufficient for this.

How Do I Install Agda?
You can find instructions on how to install Agda on the Agda wiki:
http://wiki.portal.chalmers.se/agda/pmwiki.php

Agda is implemented in Haskell, and runs on all major platforms (Mac, Linux, and
Windows). As mentioned earlier, the usual mode of programming in Agda is to write
and type-check Agda code in the EMACS text editor, which you may also need to install

http://wiki.portal.chalmers.se/agda/pmwiki.php

Preface xxi

and configure. See the instructions on the Agda wiki for all this. In addition to being
implemented in Haskell, the Agda compiler can translate Agda programs into Haskell,
which can then be compiled by the Haskell compiler to native executables. It is not
necessary to know Haskell to learn Agda, though occasionally we will see code where
ideas from Haskell or connections from Agda to Haskell are used.

The code in this book has been confirmed to work with the latest version of Agda
(2.4.2.2 at the time of this writing).

What Is the Iowa Agda Library?
The chapters of this book are organized around different ideas and abstractions from
functional programming, as implemented in a library I have been working on for
several years, called the Iowa Agda Library (IAL). Agda has its own standard library,
which you can download from the Agda wiki. I have learned a lot about verified
programming in Agda from this standard library, and incorporated several ideas and
idioms from it into my version. For purposes of learning the language, though, I have
found the Agda standard library a bit too advanced, and somewhat challenging to
navigate. You can obtain version 1.2 of the IAL, on which this book is based, via
subversion (or browse it with a Web browser) here:
http://svn.divms.uiowa.edu/repos/clc/projects/agda/ial-releases/1.2

If you access this via subversion, use username “guest” and password “guest”. This
library currently has a completely flat structure, so all files mentioned in the chapters
to come can be found in that directory.

What Is Not Covered?
Though Agda is absolutely central to this book, nevertheless this is not intended to
be a book about Agda. There are important features of Agda that are not covered. For
the biggest example, I do not attempt to cover coinductive types—which are types
for lazy infinite data structures. As noted previously, there are several competing
proposals for how to support these in Agda, and so it seems premature to focus
on one. There are other features like irrelevant arguments and instance arguments
that I am not covering, and no doubt many Agda tricks and features known only
to more advanced users than I. Records and modules are covered, though there is
surely more to say about them in Agda than you will find here. For those new to
functional programming or new to type theory—the intended audience for this book—
omission of these more advanced features should not detract from the essential
topics. Another very important idea in pure functional programming is that of a
monad. This is an elegant abstraction which is all but essential for larger-scale pure
functional programming, to handle side effects in as clean and elegant a way as

http://svn.divms.uiowa.edu/repos/clc/projects/agda/ial-releases/1.2

xxii Preface

is currently known. Monads are central to functional programming in Haskell, for
example. Regrettably, I have not managed to cover that abstraction in this book. See
tutorials on Haskell like the one of Hudak et al. for more on monads [Hudak et al.
2000].

What Are Some Other Materials about Agda?
On the “Documentation” page of the Agda wiki, you can find a number of other
tutorials about Agda, such as that by Norell and Chapman [2009]. Research papers
presenting some of the features not covered in this book include the following.

. On the Bright Side of Type Classes, on a feature called instance arguments, which
is intended to replace type classes used in languages like Haskell to support ad-
hoc polymorphism (also known as operator overloading) [Devriese and Piessens
2011].

. MiniAgda: Integrating Sized and Dependent Types, on integrating sized types, a
type-based approach to termination-checking, with dependent typing as found
in Agda [Abel 2010].

. Irrelevance in Type Theory with a Heterogeneous Equality Judgement, showing how
to integrate existing ideas on irrelevant terms (terms which can be erased during
compilation or even to check definitional equality) with Agda [Abel 2011].

What Is Some Other Reading on Type Theory More Generally?
Type theory, upon which Agda is based, is a deep field of theoretical Computer Science,
going back many decades. Indeed, its roots are in constructive logic and lambda
calculus, fields which have been under development since the early 20th century; see
Cardone and Hindley, and Troelstra for interesting historical perspectives on these
topics [Cardone and Hindley 2006, Troelstra 2011]. The particular branch of type
theory on which Agda has been developed is that of Martin-Löf type theory, developed
by the Swedish philosopher and logician Per Martin-Löf; see Nordström, Petersson,
and Smith for a readable and informative introduction to Martin-Löf type theory
[Nordström 1990]. Developing on a different branch of the type theory tree, but with
many connections and influences, is Coq, a theorem prover based on type theory,
developed at INRIA, France; see Bertot and Castéran for a thorough and accessible
introduction [Bertot and Castéran 2004]. Several other excellent books either about
Coq or strongly based on Coq are Software Foundations and Certified Programming with
Dependent Types [Pierce et al. 2015, Chlipala 2011].

Preface xxiii

Why This Book?
Students of programming owe the authors of Agda a big debt of gratitude for creating
a very nice tool based on a powerful and expressive theory of verified functional
programing called type theory. In the course of trying to learn more about verified
functional programming in Agda, I found that while there are a number of helpful
tutorials and other sources online for learning Agda, and a very responsive email list,
a more systematic description of how to do verified functional programming in Agda
was missing. I am hoping that this book will contribute to the Agda community by
helping fill that gap. There are many others who have much more expertise than I
do on advanced functional programming idioms, and on using Agda. Nevertheless, I
hope that you, the reader, can benefit from what I have learned about this topic, and
that you will find verified programming in Agda as interesting and enjoyable as I have.

A Note for Instructors
As you well appreciate, learning programming generally requires doing a substantial
amount of it and, of course, the same can be said for theorem proving. While I have
included modest handfuls of exercises at the ends of the chapters, you will likely need
much more for the graded work of a semester-long course. My strategy for devising
homework based on this book, for the past three semesters (at the time of writing) at
The University of Iowa, has been as follows.

The first two, or maybe three, homeworks are focused on very small programming
and proving tasks, along the lines of: write a function to return every other element of
a list, and then prove that the length of the resulting list is less than or equal to that
of the starting list. One can begin with booleans or other non-recursive datatypes,
and non-recursive programs and proofs over them and then move on to recursive
datatypes and recursive programs (inductive proofs). The IAL has many examples,
which unfortunately you may feel you have to exclude from re-assigning for homework,
since the solutions are publicly available in the IAL. I find it is still not too hard to come
up with a good array of small problems along these lines.

Subsequent homeworks become more like mini projects, using existing code in the
IAL (tries, Braun trees, etc.) to solve problems on roughly the scale as the case study in
Chapter 8 (maybe a little smaller or a little more ambitious, depending on student
preparation and level). I find that these problems generally will not involve much
if any external verification. At best, there is some lightweight internal verification,
and most of the focus is just on pure functional programming. In my case, I suspect
this is largely due to the challenge of identifying a reasonably interesting property or
invariant to try to prove statically, which is still within reach for students to be able to

xxiv Preface

complete with a reasonable amount of time and effort. It is not that such properties do
not exist. Rather, I have found that they are hard enough to find as part of the task of
creating an interesting assignment, that I tend not to manage to do it. Furthermore,
many undergraduates have enough trouble grasping pure functional programming
that further challenges are unnecessary.

Acknowledgments
I am grateful to the undergraduate students of CS:3820 (previously 22c:111) at The
University of Iowa for feedback that helped improve this book, and contributions to
the IAL. I’d especially like to recognize John Bodeen for his work on the gratr parser
generator discussed in Chapter 7, and Tom Werner for outstanding contributions to
the IAL. Thanks to my colleagues at The University of Iowa, particularly my chair
Alberto Segre, for supporting my experiment to introduce Agda into the required
undergraduate CS curriculum. I am also grateful to Laurie Hendren of the ACM
Books Editorial Board for her support of this project, and to Diane Cerra of Morgan &
Claypool for her work in bringing the manuscript to publication. Without them this
would still just be a draft PDF! Thank you to the reviewers of an earlier draft of this
manuscript: Jesper Cockx, Ulf Norell, and Stephanie Weirich. Their superbly informed
constructive criticism greatly improved this book. I am grateful to my wife for her
support as I finished up this book in the summer of 2015. I also wish to acknowledge
the support of the Catholic community of St. Wenceslaus, Iowa City. AMDG.

1Functional Programming
with the Booleans
There are few datatypes in computer science simpler than the booleans. They make
a good starting point for learning functional programming in Agda. The Agda code
displayed below can be found in bool.agda in the Iowa Agda Library (IAL; see the
preface for the URL for this). We will spend this chapter studying this code. In the next
chapter, we will begin our study of theorem proving in Agda, with theorems about the
boolean operations we define in this chapter.

1.1 Declaring the Datatype of Booleans
If you open bool.agda in EMACS, you should see text that starts out like this:

bool.agdamodule bool where

open import level

--

-- datatypes

--

data B : Set where

tt : B

ff : B

The main thing we want to consider here is the declaration of the boolean datatype B,
but there are a few things to look at before that.

Module declaration. Every Agda file needs to contain the definition of a single
module. Here, the module is declared by the line

module bool where

The name of the module is bool, which is required to match the name of the
file (as it does, since the file is bool.agda). Modules are organizational units

2 Chapter 1 Functional Programming with the Booleans

that can contain code and type declarations, like packages in Java. They can be
nested, and can even have parameters which you have to fill in when you import
the module. We will see more about Agda’s module system later (for example,
Section 5.4).

Import statements. To use code contained in another file, we have to import it
using import and then the name of the module provided by that other file. If we
just said import level, we would be allowed to use the code and types defined
in level.agda, but we would have to qualify them with the prefix “level.” By
writing open import level, we are telling Agda we wish to import the level

module and make use of all the types and code defined there, without writing
this qualifying “level.” prefix. We will see what the level package is providing
that is needed for the definition of the booleans.

Comments. Agda follows Haskell in using -- to indicate the start of a comment
that runs to the end of the line (similar to // in Java). To comment out a whole
block of Agda code, one can put {- in front of that block, and -} at the end of it.
This comments out the whole region, similar to /* and */ in Java. One advantage
of Agda and Haskell’s notation over Java’s is that comments in Agda and Haskell
can be nested, like this:

{-

-- a nested comment {- and another -}

-}

Now let us consider the definition of the boolean datatype B:

bool.agdadata B : Set where

tt : B

ff : B

The data keyword signals the beginning of a datatype declaration. Datatypes in Agda
are for constructing immutable data. As mentioned in the Preface, Agda is a pure
functional programming language, and mutable datatypes like arrays or updatable
reference cells are not supported (directly) by the language. So you could think of
this boolean datatype as similar to the immutable class Boolean in Java, for objects
containing a boolean value.

Following data, we have the name B for the new datatype we are defining (for the
booleans). There is no backslash command that will enter this symbol in EMACS by
default. Appendix C explains how to add some new key combinations to EMACS which
will let you include this symbol by typing \bb. Then we have “: Set”, which indicates

1.1 Declaring the Datatype of Booleans 3

that B itself has type Set. Every expression in Agda has a type, and this expression
“Set” is the type for types. So B has type Set.

1.1.1 Aside: Type Levels
You might wonder: if every expression in Agda has a type, and if Set is the type for
types, does that mean that Set is its own type? The answer is a bit surprising. It is
known that if one literally makes Set the type of itself, then the language becomes
nonterminating (we can write diverging programs, which is disallowed in Agda). This
remarkable result is discussed in a paper by Meyer and Reinhold [1986]. To avoid this,
Agda uses a trick: an infinite hierarchy of type levels. Set really stands for Set 0, and
for every natural number n ∈ {0, 1, 2, . . .}, the expression Set n has type Set (n + 1).
This is why we needed to import the level module at the beginning of this file, to
define the datatype for levels n in Set n. For the definition of the boolean datatype
B, all we really need to know is that data B : Set is declaring a datatype B, which is
itself of type Set (which is an abbreviation for Set 0).

1.1.2 Constructors tt and ff

Returning to the declaration of the booleans: we next have the where keyword, and
finally the definitions of the constructorstt andff, both of type B. These constructors
are like constructors in object-oriented programming, in that they construct elements
of the datatype. But they are primitive operations: there is no code that you write
in Agda that defines how tt and ff work. The Agda compiler will translate uses of
tt and ff to code, which actually ends up creating values in memory to represent
true and false. But within the Agda language, constructors of datatypes are primitive
operations, which we are to assume create data for us in such a way that we can inspect
it later via pattern matching.

1.1.3 Aside: Some Compiler Directives
If you are looking in bool.agda, after this declaration of the type B, you will see some
of these comments:

bool.agda{-# BUILTIN BOOL B #-}

{-# BUILTIN TRUE tt #-}

{-# BUILTIN FALSE ff #-}

{-# COMPILED_DATA B Bool True False #-}

Comments written with the delimiters “{-#” and “#-}” are directives to the Agda com-
piler. In this case, they are telling Agda that B and its constructors are the definition
to use for a built-in notion of booleans that the compiler is supporting. There is also a

4 Chapter 1 Functional Programming with the Booleans

directive with COMPILED_DATA, telling Agda to compile the B datatype as the Haskell
datatype Bool, which has constructors (in Haskell) True and False.

1.2 First Steps Interacting with Agda
As noted in the Preface, Agda is usually used from within the EMACS text editor. Let
us see a few initial commands for interacting with Agda in EMACS. You can find more
such commands from the Agda menu item in the EMACS menu bar.

Loading a file. If you are viewing an Agda file (ending in .agda) in EMACS, you can
tell Agda to process that file by typing Ctrl+c Ctrl+l. This will then enable the
following two operations.

Checking the type of an expression. After Agda has successfully loaded a file using
the previous command, you can ask it to tell you the type of an expression by
typing Ctrl+c Ctrl+d, then typing the expression, and hitting enter. For example,
you can ask Agda to see the type of tt this way. You will see B in response.

Evaluating an expression. To see what value an expression computes to (or normal-
izes to, in the terminology of type theory), type Ctrl+c Ctrl+n, then the expression,
and then hit enter. The file must be loaded first. A rather boring example is to ask
Agda to normalize tt. This expression is already a final value (no computation
required), so Agda will just print back tt. We will see more interesting examples
shortly.

1.3 Syntax Declarations
Let us continue our tour of bool.agda. Shortly below the declaration of the B datatype
of booleans, you will see declarations like this (and a few more):

bool.agdainfix 7 ~_

infixl 6 _xor_ _nand_

infixr 6 _&&_

infixr 5 _||_

These are syntax declarations. Agda has an elegant mechanism for allowing program-
mers to declare new syntactic notations for functions they wish to define. For example,
we are going to define a boolean “and” operation && just a little below in this file. This
operation is also called conjunction, and its arguments are called conjuncts. We would
like to be able to write that operation in infix notation (meaning, with the operator
between its arguments), like this:

tt && ff

1.3 Syntax Declarations 5

Furthermore, we would like Agda to understand that the negation operator ~ grabs
its argument more tightly than the conjunction operator &&. So if we write

~ tt && ff

we would like Agda to treat this as

(~ tt) && ff

as opposed to

~ (tt && ff)

We do this by telling Agda that the negation operator ~ has higher precedence than
&&. Each operator can be assigned a number as a precedence with a syntax declaration
like the ones displayed previously. In this case, we have told Agda that negation has
precedence 7 and conjunction has precedence 6:

infix 7 ~_

infixr 6 _&&_

Operators with higher precedence grab their arguments more eagerly than oper-
ators with lower precedence. Syntax declarations can also specify the associativity of
the operators. If we have an expression like

tt && ff && tt

should this be viewed as

(tt && ff) && tt

or as

tt && (ff && tt)

Here, the syntax declaration for conjunction uses the infixr keyword, which means
that conjunction associates to the right. So the second parse displayed is the one that is
chosen. Of course, for conjunction it does not matter which associativity is used, since
either way we get the same result. Actually, this is proved in bool-thms2.agda as &&-
assoc. We will learn how to prove theorems like this in Agda in the next chapter. Some
operators are not associative, of course. An example is subtraction, since (5 − 3) − 1
has value 1, while 5 − (3 − 1) has value 3. But it is up to us to declare how Agda should
parse uses of infix operators like conjunction or subtraction. This is a matter of syntax.
Proving that either associativity (left or right) gives the same result is a matter of the
semantics (meaning) of the operators.

6 Chapter 1 Functional Programming with the Booleans

Why are there underscores _ written next to these operators? These tell Agda where
the arguments of the operator will appear. By writing _&&_, we are telling Agda that
conjunction’s arguments will appear to the left and the right, respectively, of the
conjunction symbol &&. So we are saying that && is an infix operator by writing it _&&_.
Similarly, by writing if_then_else_, we are saying that the three arguments of this
operator—the boolean guard, the then-part, and the else-part—appear in the usual
positions with respect to the if, then, and else symbols. So we can write

if x then y else z

and Agda will understand that we are applying the if_then_else_ operator (which
we will define in a moment) to the three arguments x, y, and z. In fact, Agda will treat
the nice mixfix notation (where arguments can be declared to appear in and around
various symbols constituting the operator name) displayed just above as convenient
shorthand for applying the if_then_else_ function to the three arguments in suc-
cession:

if_then_else_ x y z

Occasionally it is necessary to refer to a mixfix function like if_then_else_ sepa-
rately from its arguments. In this case, we actually have to include the underscores in
the name. So for example, you can ask Agda what the type of an expression like tt &&

ff is using Ctrl+c Ctrl+d (as mentioned in Section 1.2), or you can also ask it for the
type of the negation operator ~_ by typing Ctrl+c Ctrl+d and then literally ~_. You will
see that the type is

B → B

We will consider next what this type means and how operations like conjunction
can be defined in Agda. One final note before we do: syntax declarations can appear
anywhere in the file, as long as that file does indeed define the functions in question.

1.4 Defining Boolean Operations by Pattern Matching: Negation
Just below the precedence declarations in bool.agda, which we were just examining,
we have the definitions of a number of central functions related to the booleans. Let
us look first at the simplest, negation ~_. The definition is this:

bool.agda~_ : B → B

~ tt = ff

~ ff = tt

1.4 Defining Boolean Operations by Pattern Matching: Negation 7

Definitions of functions in Agda, however complex they may be, follow a basic
pattern. First we declare the type of the function. This is accomplished by the line

~_ : B → B

This declares that the ~_ function takes in a boolean and returns a boolean. In Agda,
types that look like A → B are the types of functions which take in input of type A

and produce output of type B. So B → B is the type for functions from B to B. And
negation certainly has this type, since if we give it boolean value tt, we expect to get
back boolean value ff; and vice versa. In fact, this is exactly what is expressed by the
rest of the definition of the ~_ function:

~ tt = ff

~ ff = tt

Functions in Agda are defined by sets of equations. The left side of each equation
is required to be a pattern which matches a set of function calls, namely, the ones that
could be made with the function we are defining. Patterns can contain constructors
(like tt and ff here for type B), as well as variables, which are any other symbols that
do not already have a definition at this point in the code. In this case, which is very
simple, the first equation describes the function call ~ tt, and the second describes
the function call ~ ff. These are the only two possible function calls, since negation
just takes in a single boolean argument, and there are only two possible values for
this argument. The patterns do not need to use variables to cover all the possible
function calls to ~_. Agda requires that the patterns used in the equations defining
each function cover all possible function calls to that function. We will get an error
message if we leave some function calls uncovered by the patterns we have written.
For example, if you delete the second equation for ~_ and then reload the file with
Ctrl+c Ctrl+l, Agda will complain with an error message like this:

Incomplete pattern matching for ~_. Missing cases:

~_ ff

when checking the definition of ~_

So, we need to include both those equations for our definition of negation. To test
out the definition, try normalizing the term ~ ~ tt (for example) in Agda, by typing
Ctrl+c Ctrl+n, then ~ ~ tt, and then enter. Agda will tell you that this term normalizes
(evaluates) to tt.

8 Chapter 1 Functional Programming with the Booleans

1.4.1 Aside: Space around Operators and in Files
If you ask Agda to normalize ~~tt, you will get a nasty error message:

1,1-5

Not in scope:

~~tt at 1,1-5

when scope checking ~~tt

What is Agda complaining about? Isn’t ~~tt treated the same as ~ ~ tt, which we
just asked Agda to evaluate a moment ago? The answer, which is obvious from this
little experiment with ~~tt, is no. One quirk of Agda that takes a little getting used to
is that user-defined operators need to be separated from most other symbols with at
least one space. Otherwise, Agda thinks that you are really using just a single strange
operator name. So the error message Agda is giving us for ~~tt makes sense: it says
that ~~tt, viewed as a single symbol, is not in scope. It thinks that ~~tt is the name
of some defined operation. So it is parsing ~~tt as a single symbol, rather than two
nested function calls of the ~_ operator.

This requirement of whitespace around operators can lead to lots of irritating errors
for beginners with Agda. But by imposing this requirement, the language designers
have made it feasible to use a very rich set of names for operations. For example,
we might actually want to use ~~tt as the name for something, maybe a theorem
about applying negation twice. Also, this requirement is a small price to pay for Agda’s
flexible and natural system of user-defined notations. So it is worth getting used to.

One other note about spacing in Agda files. Agda resembles Haskell and some
other languages like Python in attaching semantic significance to the whitespace
used in your programs. Generally, indenting a further or lesser amount in Agda code
can change the meaning of what you are writing. The basic rule is that parts of your
Agda code that are linguistically parallel should be at the same indentation level. For
example, consider again our declaration of the boolean datatype:

data B : Set where

tt : B

ff : B

For example, you will get a parse error from Agda if you change the indentation like
this:

data B : Set where

tt : B

ff : B

1.5 Defining Boolean Operations by Pattern Matching: And, Or 9

This is because constructor declarations are linguistically parallel, and so they should
be at the same indentation level. How far you indent does not matter, but you should
indent at least one space in this case (and generally for nested subexpressions), and
you must indent with the same number of spaces. For another example, if you change
the definition of negation like this

~_ : B → B

~ tt = ff

~ ff = tt

so that the second equation is at a different indentation level than the first, you will
get a parse error.

1.5 Defining Boolean Operations by Pattern Matching: And, Or
Let us look next, in bool.agda in the IAL, at the definition of conjunction (boolean
“and”) _&&_, shown in Figure 1.1. We see from the first line that the type of conjunc-
tion is

B → B → B

The arrow operator is grouped to the right, so this type is actually parsed by Agda as

B → (B → B)

This type says that _&&_ takes in a boolean (the first conjunct) and returns a function
of type B → B. This function is waiting for a boolean (the second conjunct), and then
it will return the “and” of those two booleans. We know from our discussion of syntax
declarations in Section 1.3 that this operator can be given two arguments in infix
notation, like this:

tt && ff

bool.agda_&&_ : B → B → B

tt && b = b

ff && b = ff

Figure 1.1 The definition of boolean conjunction.

10 Chapter 1 Functional Programming with the Booleans

or in prefix notation, if we include the underscores as part of the operator name:

&& tt ff

Because the type for conjunction is parsed by Agda as B → (B → B), we can also just
give the conjunction operation a single argument:

&& tt

If you ask Agda what type this has by typing Ctrl+c Ctrl+d and then _&&_ tt, you
will see that it has type B → B. This makes sense, given that conjunction has type B

→ (B → B). We have given it a boolean, and now we get back a boolean-to-boolean
function. So _&&_ takes in two booleans and returns a boolean, but it can take its
booleans one at a time.

Now let us look at the code (repeated from Figure 1.1) defining the conjunction
operation:

tt && b = b

ff && b = ff

We are defining the behavior of conjunction using equations as we did for negation
(Section 1.4). Conjunction takes in two boolean arguments, and since there are two
independent possibilities for each of these, you might expect that we would have four
defining equations for conjunction. Indeed, we could just as well have defined it this
way:

tt && tt = tt

tt && ff = ff

ff && tt = ff

ff && ff = ff

But this is unnecessary. As the definition from bool.agda demonstrates, we can
define conjunction just by looking at the first argument. If the first argument is true
(tt), then the truth of the conjunction is completely determined by the truth of the
second argument. So we use the first equation

tt && b = b

to express that. Here the symbol b is treated by Agda as a variable, since it is not
defined previously. Variable names can be any symbols, with very few restrictions.
They cannot be constructor names, naturally. The symbols used can involve almost
any Unicode characters, though a few pieces of built-in punctuation cannot be used:
dot, semicolon, and parentheses.

1.6 The if-then-else Operation 11

If the first argument is false (ff), on the other hand, then there is no hope for
this poor conjunction: it will turn out false independent of the value of the second
argument. That is expressed by the second equation:

ff && b = ff

Again, we are using a variable to range over the two possibilities for the second
argument. Notice that the fact that we used the same variable b in both equations is
not semantically significant: pattern variables like these have scope only on the right-
hand side of their equation. So we could have used b1 in the first equation and b2 in
the second, for example.

The definition of disjunction (boolean “or”), which comes next in bool.agda, is
quite similar:

bool.agda_||_ : B → B → B

tt || b = tt

ff || b = b

Here the situation is dual to that of conjunction. We again just consider the first
argument. If it is tt, then this disjunction wins the jackpot: it will come out tt

regardless of the value of the second argument. And if the first argument isff, then the
only hope is that the second argument istt; the disjunction’s value is now determined
completely by that second argument.

You can test out these definitions by evaluating something like

tt && (ff || tt)

using Ctrl+c Ctrl+n in Agda (you should get tt in this case).

1.6 The if-then-else Operation
As mentioned in our discussion of syntax declarations in Section 1.3, we can define
our own if-then-else operation in Agda. In many languages, this operation is built in,
but we will define it ourselves. Here is the code:

bool.agdaif_then_else_ : ∀ {�} {A : Set �} → B → A → A → A

if tt then t else f = t

if ff then t else f = f

As we have seen already, every function definition in Agda starts by stating the type
of the function (using a colon ‘:’), and then gives the actual code for the function. The
complicated part of this definition is the type, so let’s come back to that in a moment.
The equations defining the functions are very easy to understand:

12 Chapter 1 Functional Programming with the Booleans

if tt then y else z = y

if ff then y else z = z

An if-then-else expression like if x then y else z consists of a guard x, a then-part
y, and an else-part z. The equations are pattern-matching on the guard. They say that
if the guard of the if-then-else expression is true (tt), then we should return the then-
part y (whatever value that has). And if the guard is false (ff), then we should return
the else-part z. So if we ask Agda to evaluate a term like

if tt then ff else tt

using Ctrl+c Ctrl+n, we will get the then-part, which is ff in this case.
Now the interesting thing about this if-then-else operator is that it is polymorphic:

it will work just fine no matter what the type of the then-part and the else-part are,
as long as those parts have the same type. So when we define the natural numbers in
Chapter 3, we will be able to ask Agda to evaluate terms like

if tt then 21 else 32

(and get the value 21 back). We cannot do that at the moment while inspecting the
file bool.agda, because the natural numbers are defined in nat.agda, which is not
imported by bool.agda. So Agda does not yet know about the natural numbers in the
file bool.agda. But the main point is that as long as x has type B and y and z have the
same type, the expression if x then y else z is typeable.

And this is what the type for the if-then-else operator says:

if_then_else_ : ∀ {�} {A : Set �} → B → A → A → A

Let us read through this type slowly. First, we have the symbol ∀, which can be used to
introduce some variables which may be used later in the type expression itself. To type
this symbol into EMACS, you type \all. Here, we are introducing � (which is typed with
\ell in EMACS) and A. Agda always requires a type for each variable that we introduce,
but a lot of times it can figure those types out. Here, Agda sees that we are using � as
an argument to Set, and it is able to deduce that � is a type level. We mentioned those
toward the end of Section 1.1. The point of these variables is to express polymorphism.
The if-then-else operation works for any type A, from any type level �. Now, we won’t
use type levels too much in this book, but it is a good idea to make our basic operations
like if-then-else as polymorphic as we reasonably can in Agda. So we should make them
both type and level polymorphic. By putting those type variables in curly braces, we
are instructing Agda to try to infer their values. We will see more about this feature
later. So when we call the function, we do not actually have to tell Agda what the values
for � and A are. It will try to figure them out from the types of the other arguments.

1.6 The if-then-else Operation 13

After these type variables expressing polymorphism of if-then-else, we have a part
of the type expression that hopefully is less exotic:

B → A → A → A

This is expressing the basic idea that if-then-else takes in three inputs, which are a
boolean (B, for the guard) and then an A value (for the then-part) and another A value
(for the else-part); and returns an A value. This works for whatever type A Agda has
inferred for the then- and else-parts.

1.6.1 Some Examples with if-then-else
If we ask Agda to type-check (with Ctrl+c Ctrl+d) the expression

if tt then ff else ff

it will figure out that the type variable A must be B, since the then- and else-parts are
both booleans. And since B is at type level 0, the variable � can be inferred to be the
value for level zero. The type for the whole term is B, of course.

Slightly more interestingly, we can use then- and else-parts which have functional
type. If we ask Agda to type-check

if tt then _&&_ else _||_

then it will reply that the type is B → B → B. We are using the conjunction and
disjunction operators without their two arguments, so we have to put the underscores
as part of their names. And we are using conjunction as the then-part, and disjunction
as the else-part, of this expression. Since conjunction and disjunction both have the
same type (B → B → B), this is a legal use of if-then-else.

Finally, to demonstrate a little bit of just how polymorphic Agda’s type system is,
we can ask Agda to type-check the following:

if tt then B else (B → B)

This is certainly not something you can write in a mainstream programming lan-
guage. This expression evaluates to the type B if its guard is true (which it is) and to
the type B → B otherwise. We know that B has type Set (which is just an abbreviation
for Set 0, as mentioned in Section 1.1). It turns out that B → B has type Set, also. In
fact, in Agda, if A and B both have type Set �, then so does A → B. So both the then-
part (B) and else-part (B → B) of this if-then-else expression have type Set, and so the
whole expression has that type, too. And that is what Agda will tell you if you check
the type of the expression with Ctrl+c Ctrl+d.

14 Chapter 1 Functional Programming with the Booleans

1.7 Conclusion
In this chapter, we have seen some basics of programming in Agda in EMACS.

. We saw the declaration of the boolean datatype B, with its constructors tt and
ff. To type mathematical symbols like B in EMACS, you use key sequences that
begin with a backslash, like \bb for B (see Appendix A).

. Agda’s flexible mixfix notation system allows you to specify where arguments go
in and around parts of an operator name. This lets us declare infix operators
(where the arguments are on either side, and the operator is in between them),
as well as fancier things like if-then-else. When the function is used by itself,
we have to write the underscores as part of its name, which indicate where the
arguments go.

. We saw how to define functions on the booleans using pattern matching and
equations. The examples we saw were negation ~_, conjunction _&&_, and dis-
junction _||_.

. We can ask Agda to do a couple interesting things for us, from EMACS.

Check the type of an expression by typing Ctrl+c Ctrl+d, then the expres-
sion, and then Enter.

Normalize (evaluate) an expression by typing Ctrl+c Ctrl+n, then the ex-
pression, and then Enter.

. Function types like B → B describe functions. The type B → B → B describes
functions which take in two booleans as input, one at a time, and produce a
boolean output.

. We also saw an example of a polymorphic function, namely, if-then-else. Its type
quantifies over a type level � and a type A at that type level, and then takes in the
expected arguments:

if_then_else_ : ∀ {�} {A : Set �} → B → A → A → A

In the next chapter, we will start to see the feature that really distinguishes Agda
from programming languages as most of us have known them until now: theorem
proving.

Exercises
1.1. Evaluate the following expressions in Agda within EMACS. For this, the easiest
thing to do is to open and load the bool.agda file first:

(a) tt && (ff xor ~ ff)

Exercises 15

(b) ~ tt && (ff imp ff)

(c) if tt xor tt then ff else ff

1.2. What is the type of each of the following expressions? (You can check these in
Agda with Ctrl+c Ctrl+d?)

(a) tt

(b) if tt then ff else tt

(c) _&&_

(d) B

1.3. Pick a function defined in bool.agda like _xor_, _imp_, or another, to redefine
yourself. You can do this in a new file called my-bool.agda that begins this way, where
X should be replaced by the name of the function you will redefine (e.g., _xor_, with
the underscores):

module my-bool where

open import bool hiding (X)

1.4. Define a datatype day, which is similar to the B datatype but has one constructor
for each day of the week.

1.5. Using the day datatype from the previous problem, define a function nextday

of type day → day, which given a day of the week will return the next day of the week
(so nextday Sunday should return Monday).

1.6. Define a datatype suit for suits from a standard deck of cards. You should have
one constructor for each of the four suits: hearts, spades, diamonds, and clubs.

1.7. Define a function is-red, which takes in a suit as defined in the previous
problem and returns tt if and only if the suit is a red one (hearts and diamonds).

